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ABSTRACT

We consider infinite dimensional optimization problems involving

entropy-type functionals in the objective function as well as in the

constraints. A duality theory is developed for such problems and

applied to the reliability rate function problem in Information

Theory.

Key Words: Optimization in Infinite Dimensional Spaces;

Duality in Convex Optimization; Entropy; Divergence; Information

Theory; Channel Capacity; Reliability Rate Function; Error

Exponent Function.
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1. IN'iROUUCr [ON

Extrenum problems involving entropy-type functionals appear in

a diversity of apulicalions. To mention just few: stati ical

estimation and hypothesis testing (Kullback-Leibler (Ref. 1) , Kullback

(Ref. 2), Akaike (Ref. 3)), traffic engineering (Charnes et al. (Ref. 4)),

marketing (Charnes et al (Ref. 5)), accounting (Charnes and Cooper

(Refs. 6,7)), information theory (Shannon (Ref. 8)).

In the majority of these applications, the extremum problems

involved are studied cnly for the case of finite distributions. Extensions

to arbitrary distributions were derived recently by Ben-Tal and Charnes

(Ref. 9). The extremum problem is set up as an infinite dimensional

convex program with linear equality constraints, nanely:

(A) inf { f(t) log f dt: f(t)a.(t)dt = 6. i I . .}'

T T

where D is the convex subset of density functions with support T,

and g(.) is a given density in D.

It is shown in Ref. 9 that the dual problem is the unconstrained

finite dimensional concave program-

m

t i=l
(B) sup {yte - log g(t)e dt}

y~i~ T

The dual pair (A)-(B) has a very interesting statistical inter-

m
pretation: let (0.1. be parameters of the distribution, estimated

in terms of a sample x = (x1 .... xn) by

- 1
W(x) e (xI  ,x) (a (x1 ) +.+ a (x))

S. n 1 n

and let these estimates replace e. in the constraints of (A).
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Consider now the problems of finding the maximum likelihood estimator

n (x) of the parameter vector ,. ,T in the exponential

fa.-ily geerated by the (fixed) density aT~t), i.e.:

m[ iai(t) .''.-..

f(tIr) = g(t)c(TO)e".

where c(r) is a normalizing constant, i.e.:

m
Sr.a (t)

c(T) = J g(t)e dt.

T

The likelihood function is

n n n j i NJ
H f(x.[ir) = ( H g(x.)}.c() e

j=l j=l

hence log(likelihood) const. + log C(7)e Itherefore
the maximum likelihood estimator n*(x) is obtained by solving:

max Ii..(x) - log c-()} =

ir. (t) "--m ~ ~ ~ T aJ ~~e~

max - log g(t)e
E ' i=l -f

T

The latter is precisely the dual problem (B). Thus, for the

exponential family, Statistical Information theory and the Maximum

Likelihood approach are dual principles.

Many problems in information theory, howevar, cannot be

stated just with linear constraints as in problem (A), they contain

also (nonlinear) entropy type ineqiality constraints. It is the purpose

of this paper to derive duality results for such problems and to

de onstrate their power and elegance in treating such problems.

3-- ..*....-
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As a motivation we begin by describing the channel capacity

problem of Information Theory. Consider a communication channel

described by an input alphabet A = (1,...,n}, an output alphabet

B = (I.... ,m} and by a probability transition matrix

Q = (Q(klj)} , where Q(kjj) is the probability of receiving the

output letter k E B when input letter j E A was transmitted.

The capacity of the channel is defined as:

in n 
,k jC max (I(p,Q) max Q(k)j)lo

pEp pEP k=l j=l J  n
pz Q(klz)

where Z=l
n n n

]n tpE i n: p. >,0 p. = i} (2)

j=l _

is the set of all probability distributions on the channel input,

and I(p,Q) is known as the average mutual information between

the channel input and channel output. Channel capacity is the basic

concept of Shannon's mathematical theory of communication (later

called Information theory). For more details on the notion of

capacity and its significance, the reader is referred to Shannon

(Ref. 8), Gallager (Ref. 10), Jelinek (Ref. 11).

Roughly speaking, the basic theorem of information theory, the

so-called "noisy channel coding theorem", states that if the channel

has capaoity C, it is possible to transmit over this channel

messages, of sufficiently large length, at rate R< C and still

be able to decode them with a probability of error as small as

desired. Upper bound on the probability of error is given in terms

of an exponential decreasing function of the so-called reliability

rate fmnction E(R). In the classical proof of the coding theorem,

4
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the function E(R) is derived via a sequence of mathematical mani-

pulations, see e.g., Gallager (Ref. 12) and Csiszar (Ref. 13).

Blahiut (Ref. 14), has enlightened many basic problems of coding theory

by defining E(R) as a saddle function problem, involving the Kullback-

Leibler relative entropy functional namely, for a given channel

matrix P(kjj):

m n

E(R) = max min p.Q(klj)log Q(klj) (3)
PEP n QEO(R) k=l j=l P(kjj)

where

Q(R) IQ: I(p,Q) < R}, R a positive scalar.

Starting from this definition, Blahut (Ref. 14) proved. that

E(R) can be expressed by the conventional parametric form originally

proposed by Gallager (Ref. 12) namely,

I
m n 1+6 1+6

E(R) max max -R-log k pP(klj) }1} (4)
6>0 pEeP k=l j=l

A new proof of this result is given here in Section 3, via the duality

theory developed in Section 2. The duality framework can be applied

to a variety of other extremum problems of information theory, (see

e.g., Blahut (Ref. 14), Table I, p. 417).

In particular, more than one entrouy-type constraint can be

easily dealt with, and the general (not necessarily discrete) distribu-

tion case can be cornsi4 ered.



2. DUALITY THEORY FOR LINEAR AND ENTROPY CONSTRAINED PROGRAMS

Let dt be a a-finite additive measure defined on a 0-field

I A 1
of the subsets of a measurable space T, and let L = L (T,dt) be

the usual Lebesgue space of measurable real valued functions x on

T so that

11 A fx(t) Idt <

T

Let I = :x E L x(t) > O(a.e), f x(t)dt 1} be the convex subset

of L which is the set of Tall probability densities x(') on T.

Consider the infinite dimensional optimization problem:

(P) inf x(t) log x(t) dt

t c(t) at

T

subject to

A(5
J a. (t)x(t)dt > b. i E I l,. }(5)

T

x(t) log x(t) e k E K 1 (6)

T

x(t) E ID C L

where ck: T -JR, k E (O} U K are given surrmable positive functions;

a. : T -1R are given continuous functions; and (b } {ek}
i iEI' k kEK

are given real numbers.

Here and henceforth, 0 log 0 = lir t log t 0. A dual+

representation of problem (2) will be derived via Iagrimjian duality.

Recall that for a convex optimization probl:m:

(A) inf (f(x) : g(x) . 0 x E C c X:

where f: C -rR, g: C mare convex functions defined on a convex

subset C of a linear space X, the Lagranqin for problem (A) is

6



defined as L: C xIR m +IR given by:+

t
L(x,y) = f(x) + y g(W).

The dual objective function is

hy) = inf L(x,y)
xEc

and then the dual problem (B) associated with (A) is defined as:

(B) sup h(y).
y>O

The main result concerning the dual pair (A) and (B) is the existence

of a saddle 2oint (x*,y*) for (A) or equivalently, the validity of

a strong duality result:

(*)

inf(A) = max (B)

Under the familiar Slater regularity condition:

(S) 3x E C: g(x) < 0

the strong duality relation is guaranteed. More precisely we have:

(see e.g., Rockafellar (Refs. 15,16), Laurent (Ref. 17), Ponstein

(Ref. 18))

Theorem 2.1 Assume that inf(A) < and that the regullarity

assumption (S) holds then

inf(A) max(B).
0

Remark 2.1 The regularity condition (S) is, in fact, relvtte2 .

to the notion of stably set problem. More details are available

(*) We follow the convention of writing "min" ("max") if the infinmu.

(supremm) is attained.

7



in R(tar Ref 1i) ancd Lavrernt (ReF 17) (e;j~ci !Ly Ti;eom

7.6.1, p. 403). _ .

R.ark 2.2 A resilt of the type of Theor0,n I has typically a

si-.7-e tric version, i.e., if (S) is assjme.I st-tbly set then

m;in(A) s -p(B), (see Rocka e ,Lac (Ref. 15), Theoe-r 4, p. 179).

We now retirn to the primil "entropy problen" (P) . The

derivitLon of its dal objective function is baseJ on the following

s;-ple result.

Le:7.-a 2.1 Let s(t) be a given positive szrable function:

s(t)dt = S <

T

Then

min x(t)log s dt - logs
xEUD f S(t)

T

w*-Sre the optirmaI pro'cab ity de nsLty x*(t) S~t)

SSS~t)
P_ro F: Define h(t) S ,the n h(t) E U), h neby Theo-rem 3. 1, -"

p. 14, Killba:k (Ref. 2), we hae:

(x Ct)
i n J x (t) log X-t- dt 0

x Eu .t
T

wh.ere the inCin.. is atta;7.e for x*(t) h ft) s t)
S

Then using the i'er, Lty:

f log log f 1- -to s(t) ts(t)ff
T T T

the r._silt foLtcw. "-

., " "
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The Lagrangian for problem (P) is L: ])xIR x IR -0IR
4 *

hxy) bt t S x(t) C-kxt }x (t)dt

L(x,yX) =b y- e X + {log c t (t) + L klog }(t)fc ( t Y i i kT tT
T o iEi kEK k

(7)

and thus the dual problem (D) associated with (P) is defined as:

sup{inf L(x,y,X): y E m, A E Rp }
xED + +

The ncxt result shows that the dual problem (D) can be expressed simply

as a finite dimensional concave program involving only nonnegative

constraints.

Theorem 2.2 The dual problem of (P) is given by:

1it t
-f XB (t) +y A(t)}

(D) SUp (y-Xte-plog f c (t)e dt}
Y E + T

TiX E R

where:

P =1+ Ak , and

AMt (a (t) ....,a (t)) t  B It) ( ( ) . . M t

Im Ip

with
cCt)

B (t) = log ( Vk E K = ,.. .p}. k c 0 t)

Proof: The Lagrangian d.fin]d in (7) can be written after some

algebraic manipulations a.;:

(1+

L~x,y,e) t x tog -k t dt
-Y j xt~log X ky tA~t)

T ( Ck (t) )e

k=O k

q J



P Ck t)
Then, defining p= I + 1k ani. B k(t) :log c--(t a little

k~l o

algpbra shows that the dual objectiv,, function can be exprem;ed as:

h(y,X) = yb - Xe + P inf x (t) Log . --... - --.. ..

XCI) T XBA B(t)*y A(t)}

c (t) e
0

1 tA B(t) +y A(t)}
Now, applying Lemma 2.1 with s(t) c (t)e 0  we get0

the desired result.

a

Duality results for the pair of problems (P)-(D) will now follow

by setting problem (P) as a convex program of the type (A) anJ then

applying Theorem 2.1.

Theorem 2. 3

(a) If (P) is feasible then inf(P) is attained and

min(P) = sup(D).

Moreover, if there exists x E ID satisfying the constraints

(5), (6) strictly, then sup(D) is attained and

min(P) = max(D).

(b) If x* C ID solves (P) and y* E IP, A* E L + solves (D) then:

1--A*tB(t)+y tA(t)}

c (t)e 
P

I 0

T

Pr, If: In order to apply Theorem 2.1, we r,,l to set orohl.m (P) in

th' for1-t of the convex oroqr im (A). Thus, consider the lineir

I NmO,: A i'r A: L P y:

10

. ..... . . .



a (t) x(t)dt

TJa -m a(t)x(t)dt

/T

and for k E (0} JK, define the integral functionals

x(t)log tdt if x E D
f )(t)
T

I k(X) =

otherwise.

Then problem (P) can be written as a convex optimization problem.

(P) inf(Io(x): Ax >. b, Ik(x) < ek  kE K, x EID}.

Note that (P) corresponds to (A) with

b-Ax
X:=L , C: = D, f(x) :=o W and g(x):=

I (x)-e

and then the results follow from Theorem 2.1. In fact, since the

dual (D), given in Theorem 2.2, has only nonnegative constraints

(y > 0, X > 0), it satisfies the strongest constraint, implying

by Remark 2.2 lack of duality gap and attainment of the primal

infimum. Thus the first part of conclusion (a) follows. The

second part follows directly from Theorem 2.1 itself. Moreover,

part (a) implies the existence of a saddle point

(x*(t),y*,X*) ED x IR m x so
+

min L(xy*,X*) = L(x*,y*,L*)
x EX

and the expression for x given in (b) follows from the last part

of Lemma 2.1.

0

Il
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3. AN APPLICATION IN INFORM.ATION THEORY

In this section we apply the duality relation for problem (P)

to treat in a unified simple way the reliability rate function problem

described in the introduction. While ouf results developed in Section

2 are applicable to the case of general probability distributions,

we restrict ourselves here to the case of finite discrete probability

distributions, since they include most of the interesting problems

appearing in information theory. We begin with some further notations

and definitions, following closely the terminology of (Ref. 14).

The relative entropy or discrimination between two discrete

(finite) distributions p, q playing a fundamental role in statistical

information theory is a function J: IPn x ]pn +IR defined by:

n PkJ(p,q) = l Pjog - (8)

k=l k

It is well known that J is convex in each of its arguments, non-

negative, and equal to zero if and only if Pk = k' Vk, (see e.g.,

Ref.2).

Similarly, one defines the average discrimination by:

n m

J(Q,P) = p.Q(k j)log e(kj)(
j=l k=l J P (k )

where p, Q, P are as defined in the Introduction.

In the rest of this paper we simplify the notations: probability

transition matrix like P(klj) are denoted Pkj and sunmation

indices are dropped.

An error exponent function is defined in Blahut (1974] as the

following (single) entropy constrained program:

(E) e(r) = min(J(q,q2) : q E P(r)}

2?
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r71

IP'(r) = [q E IPn: J(q,q1 ) . r}

r is a given positive scalar and ql' q 2 are giv-en distrib-itioni in

Pn. Problem (E) just defined is a special case of problemn (P), des-

cribed in Section 2 with: I = 0 (i.e., no linear contrairn's) K = (1""

and with c (t), c (t) corresponding here to the discrete finite dis-

tributions q2, qI respectively. Moreover, since problem (E)

consists of minimizing continuous function over the compact set IP(r),

the minimum is attained; we know also from Theorem 2.2 that the dual

problem (H) corresponding to (E) involves only nonnegative constraints,

hence satisfying the strongest constraint qualifications; we get

according to Theorem 2.2 and Theorem 2.3, by setting

p =1 + X 1 + 6 and e1 =r,

Theorem 3.1 A dual representation of (S) is the progra-m

Ik[ [~+'5 q1+5 I $  :[

(H) e(r) = max -kr - 2kq

Mocreover, if q E F solves (E) anA 6 > 0 solv-es (H) the-n

6 11 ..
5 I+s-

_+S __

q I k q 2k
qk = - 6 -1

1+5 1+5

k q 2 k
k Z

We recover here, a result obtained in ((Ref.14), Theorem 7).

We ncw derive the dual reoresentation of E(R) by reference

to the error exxnent function e(r)

Recalling the definition of the reliability rite function giv'en in

13
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the Introduction (see eq. (3)) and using our notations we have:

E(R) = max min J(Q,P) (10)
P Ein QEQ(R)

where
Q(R) = (Q: I(p,Q) < RI.

A useful identity for the average mutual informatiorn is

I(pmQ) min J(Q,q) (1])
q EIP

where
m n

J¢Q,q):z= . [p.Q(klj)log Q(k 
")

k=1 j=1 q k

this can be verified by observing that the minimum is achieved for

q p ° kj
J -".3

Using (11), problem (10) can be reformulated as:

E(R) max min { (Q,P): min J(Q,q) :< RI (12)
p E.T QEQ(R) q EIP

Now it is an easy exercise to show that any optimization problem

of the form rain{f (x): min g(x,y) , r} is equivalent to
x

min (f(x): g(x,y) . r) hence (12) becomes
x,y

E(R) max min mi {J(Q,P): J(Q,q) , R} (13)

p q Q

The inner minimum in (13) is of the form of e(r) in problem (E),

and is appropriately denoted by e(R,q). Then by Theorem 3.1, a

dual representation of it is easily shown to be:

14-5

e(R,q) = max {-5R- log(j k7 qk (14)

6>0 k j.

Substituting the latter representation in (13), we get

14
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E(R) = max min max {g(q,6) - 6R} (15)
p q 6>O

where

g(q,6) -log PI-k5 J (16)

kJ

We shall prove that the "min-max" appearing in (15) can be reversed.

Before, we need an auxiliary result.

Lemma 3.1 The function g(q,6) defined in (16) is

(a) concave in 6 for any q E n

(b) convex in q for any 6 >O.

Proof: (a) It is well known that the Lagrangian dual function is

always concave in the dual variables, hence (a) follows.

(b) Let f:]R IR be a convex decreasing function, and let

g: Rn -I be a concave function, then it: is easy to verify that

h(x) = f(g(x)) is convex. 6

Take f(t) = -log t (convex decreasing), g(q) = akq k  with
6 k

ak:= 1Pj > 0 (concave for 6 > 0) then clearly
)

g(q,S) (l+S)f(g(q)) and (b) is proved.

The min-max theorem related to (15) now follows.

Theorem 3.1 Let K(q,6) = g(q,6) - 6R

min max K(q,6) max min K(q,6) (17)
q 6>>0 6>0 q .1

Proof: By Lemma 3.1, K(q,S) is a convex-concave saddle function

for every q E Fn and every 6 0 0. By a result of Rockafeller

(Ref. 19), a sufficient condition for the validity of (17) for a

15
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general convex-concave saddle function is:

K0 such that

o d- (q,') > 0 (q E Pn, 6 > 0).

This is certainly satisfied if:

3 q, 3 6 >0 such that dK (q,) < 0,

i.e.,

d
3q, 36 > 0: g'(q,6) = - g(q,6) < R (18)

Since R > 0, it suffices to prove that:

inf g' (q,6) < 0 (19)

But g' (q,6) is a derivative of a concave function and thus is

decreasing, hence

inf g'(q,6) = lim g'(q,6) (20)
6>.0 6- =

Moreover, the gradient inequality for the concave function g(q,.)

implies:

0 = g(q,O) . g(q,6) - 6g' (q,6)

hence:

g' (q,6) < g(- ' ) -'

Thus, to prove (19) it siffices to show that

lim g (,6)< 0
6- 6

Indeed, straightforward .-omputation shows that lir 0

16
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The last theorem permits us to write E(R) (see, eq. (15)) as:

E(R) = max max min K(q,6)
p s>-0 q

However, the next result, will show that the inner minimum can be

computed, and thus E(R) can be expressed simply as a double maximum

problem.

Lenma 3.2

max log )i log y+a (C > 0)
xEX \i Yy

where •
n

[x E Rn: x > 0 1 xk .
k=l

Proof: From Holder inequality we get

Taking log of both expressions and using the fact that xk = I,.

we get:

sup log x Y log Y
xEx k k) k

Yk"'°" " 
"

and the sup is attained for x =k Y iil[[i;cz[i

Now, since

min K(q,'S) -5R -max 9(6,q) ,
q q1

1+6"

using Lemma 3.2 with Xk :=qk and y: = pP , a final expression

for the reliability rate function E(P.) is: - -

1+
E(R) kmax max -5R log I (21) -

17
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This result coincides with Theorem 18 given in (Ref. 14).

The second term in (21) is the so-called Gallaqer function.

The dual representation (21) is useful for deriving efficient

computational algorithms, see e.g., (Ref. 20).
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